Page 77 - основы милогии 1999
P. 77
b..uiLU M.ll, "Основы милосии". 19991 ОД. ■
То будем говорить, что для
<о|,а2,...,а„_1 >и <ап>
транзитивным, если из л Rу иу R z следует х R z; нетранзитивным, если из х“R у и у (2.2-8)
.ледует x“R z; выполняется отношение R, т.е.
(2 2-91
связным, если х R у или у R х; слабосвязным, если из х ? у следует х R у или у R х. <a],a2,...,an_i>R <ап>
Все перечисленные свойства стандартны, за исключением двух последних. Связное Множества А, А,,..., Ап будем называть базисными множествами п -арного отношения иерархии.
гение часто называют сильно связным или полным; слабосвязное отношение также Отношения иерархии порядка можно получить путем композиции отношений иерархии с
зают полным или просто связным. Два свойства первой группы являются меньшим порядком, Рассмотрим следующие бинарные (двойственные) отношения иерархии.
воречивыми (т. е. они не могут выполняться одновременно), но этого нельзя утверждать Е={<а,,Ь >,< а2,Ь2 >,< а3,Ь, >,...,< а(,Ь, >,...}
ительно свойств остальных трех групп. Например, асимметричность и нетранзитивность R={<b„c,>,< b2,c2 >,< b3,c3 >,...,< b,ck >,...} (2.2-10)
1ают транзитивность; связность влечет слабую связность; симметричность и S={<c,,d,>,< c2,d2 >,< c3,d3 >,...,< d,>„..}
летричность имеют место одновременно, если R пусто; если же R не пусто, то
: гричность и асимметричность являются противоречивыми свойствами. Составим композицию этих отношений. Получим следующие наборы
Пусть X - множество всех живых людей. Тогда отношение “выше, чем” является E(R(S))=«a1,b,,c,,d >,<a2,b2,c2,d2>„. .,<a,bj,ck,d1>„ ..> (2.2-11)
лексивным, асимметричным, транзитивным и нетранзитивным; отношение “ему (ей) Из определения композиции отношений и из (2.2-10) и (2.2-11) видно, что любое отношение иерархии
<о же лет, как и” рефлексивно, транзитивно, нетранзитивно и связно; отношение “является n-го порядка можно представить как композицию вложенных друг в друга бинарных (двойственных)
>й (по крайней мере один из родителей общий) симметрично (но почему не транзитивно?); отношений иерархии, т.е. всегда существует возможность декомпозиции n-арных отношений. При
ление “знаю имя”, используемое при исследованиях пациентов с потерей памяти, не этом композицию отношений вида
етворяет ни одному из перечисленных свойств. Транзитивное бинарное отношение Т= E(R(S)) (2.2-12)
•ается упорядочением или отношением порядка. К сожалению, для обозначения будем называть прямой, а композицию
■ений порядка используются весьма различные термины. Например, асимметричное, T‘=((S)R)E) (2.2-13)
итивное и слабосвязное отношение называют по-разному: линейным порядком, строгим будем называть обратной. Обратное отношение Т-' является симметричным к отношению Т.
дочением, сильным порядком, простым порядком, общим упорядочением, полным
дочением, связным упорядочением и цепью. (Напомним, что таким отношением является 2.2.3. ОТНОШЕНИЯ ПОЛЕЗНОСТИ
зение “больше, чем” на множестве действительных чисел.). Некоторые из только что Множества отношений в иерархических системах являются строго упорядоченными. Эти
исленных терминов используются также для обозначения принципов упорядочения с отношения порядка возникают в системах в процессе их эволюции. На начальных этапах, например, в
ми свойствами. Следовательно, когда говорят о некотором типе упорядочения, то атомах, отношения двойственности на начальном этапе реализуются только за счет противоположности
одимо определить, какими свойствами оно обладает. спинов электронов и протонов. На более поздних этапах эволюции, по мере усложнения системы, ее
потребности в контактах с внешней средой увеличивалась. Каждая оболочка системы стала иметь
2.2.2. ОТНОШЕНИЯ ПРЕЕМСТВЕННОСТИ “валентность”, определяющую ее потребность в контактах с внешней средой, в результате которых
Отношения двойственности носят преемственный характер и определяются уровнем она будет иметь возможность получать недостающие ей компоненты.
Если таких контактов будет установлено более двух, то мы можем говорить о
хии системы, уровнем ее интегрированности. В процессе эволюции, по мере усложнения
тений двойственности, между интегрированными оболочками (системами) возникают мультидвойственных отношениях иерархии. Смысл мультидвойственных отношений можно сравнить
с ситуацией, которая имеет место в вычислительных системах, работающих в реальном масштабе
: отношения, отношения субординации, которые характеризуются уже вертикальной
доченностью, подчинением и соподчинением оболочек и подоболочек иерархических времени. Каждому клиенту кажется, что компьютер работает только с ним, только с ним осуществляет
и. Эти отношения составляют важнейшую особенность структуры всякой системы, обмен информацией, в реальном масштабе времени.
пения субординации могут иметь более тонкий спектр расщепления. В этом случае мы Коммуникационные связи определяют уже не противоположность, а степень полезности
м говорить об отношениях суб-субординации. В результате подобного расщепления одних иерархических оболочек другим. Отношения полезности могут устанавливаться по принципу
“каждый с каждым”. Однако следует иметь в виду, что далеко не всегда такие коммуникационные
пения субординации образуют, в общем случае, древовидные структуры. В результате
>ного расщепления отношений субординации образуются уровни иерархии отношений, связи будут оптимальными, т.к. система может оказаться структурно перегруженной и ее необходимо
:тсризующие упорядоченную преемственность отношений элементов множеств. Эта будет переструктурировать.
1ственность может определяться с помощью некоторого набора правил идентификации Естественно, что в процессе подобной интеграции оболочек системы или систем, отношения
полезности будут справедливы не только для той оболочки (системы) которая является инициатором
установления коммуникационных связей, но и для другой оболочки (системы), с которой
A1+]=A.(mod R,) (2.2-6)
R - отношение порядка, заданного на А. устанавливаются отношения полезности. Если для какой-либо из сторон такие отношения оказываются
А, - элементы (подмножества). бесполезными, то такие контакты разрываются, как не целесообразные. Отношения полезности
Если R" отношения иерархии n-го порядка и приводят к появлению мультдвойственных отношений между оболочками систем. В процессе
R" отношения иерархии n-го порядка и интеграции эти отношения, как правило, могут преобразоваться в устойчивые отношения
субординации. При анализе такие мультидвойственные системы очень сложно
<ах,а1,...,ап >е Rn (2.2-7)