Page 88 - основы милогии 1999
P. 88
K'onibK.i X cen. нскоюрпм модель ситуации. В свою очередь, Z можег осознать, что внутренний
р X и У устроен именно iiimim образом. Успех в достижении конечной цели функционирования
многом предопределен icm, как персонажи имитируют внутренний мир друг друга, насколько
л доверяют друг другу. Не имея детализированной картины, в которой учитываются
>бенности концептуального строения внутреннего мира взаимодействующего персонажа,
юзможно правильно толковать его действия. Например, некоторое изменение состояния
гемы в условиях помех может быть принято как помеха и не принято к исполнению, в то
мя как это было действительное изменение состояние системы, которое персонаж должен
л принять к сведению и исполнению.
Однако даже при небольшом числе участников концептуальные процессы имеют сложное
оение, и необходим специальный аппарат, позволяющий сделать их предметом анализа,
этому целесообразно ввести специальный “алгебраический язык”, который позволяет
Сражать подобные процессы любой сложности. Будем изображать символом ? “плацдарм”,
котором действуют персонажи. Картины этого плацдарма, которые могут лежать перед
сонажами X, Y и Z, обозначим соответственно
£2 = x(£2),£2y=y(£2),£2t = z(£2)
тается: “£2 с позиции X”, “£2 с позиции У”, “£2 с позиции z” ). Элементы х (£2), у(£2), z (£2)
пикают как результат осознания соответствующим персонажем своего места и роли на
щдарме £2. Картины, которые есть у одних персонажей, могут отражаться другими
сонажами. В результате возникают элементы £2ху, £2xz, £2yz и т.д. (читается: “£2х с позиции
“£2х с позиции Z, £2у с позиции Z и т. д.”). Элементы с двумя индексами также могут отражаться,
:зультате чего возникают £2xyz, £2xzy, £2zxy и т. д. Они читаются соответственно-“£2ху с позиции
1 т. д. Картина, которую некоторый персонаж имел в момент t,, может быть также осознана
уже в момент t2„ причем осознана именно как картина, а не как некоторая “физическая
льность”. Вследствие этого возникают элементы типа £2хх, £2уу, £2ххх и т.д. Теперь изобразим
>цесс взаимоотношения трех персонажей на плацдарме. В момент tt в нашей модели никаких
тренних картин у персонажей нет (рис. 1). Системе в этом случае соответствует символ £2.
Концептуальную систему в момент t, можно представить в виде суммы
£2 =(£2+х (£2))
i содержит две компоненты: плацдарм и карту плацдарма, лежащую перед X. Если в момент
омент t2 осознание этой системы произведет персонаж У, то мы получим следующую картину,
орой соответствует следующий многочлен:
£2 == £2,+ у (£2,) =£2 + х (£2)+ у (£2+х (£2)).
лма, находящаяся в круглых скобках, это “£2+х (£2) с позиции У”.
Концептуальную систему после того, как очередное осознание произвел персонаж Z, мы
ерь легко можем изобразить так:
£23= £2+ х (£2) + у(£2+ х (£2))+z(£2+ х (£2) + у(£2+ (£2)))
вставляется естественным ввести относительно правого индекса закон дистрибутивности,
орый позволит раскрыть скобки. Например, следующие выражения будут эквивалентными:
£2+ х(£2) + у(£2+х(£2))=£2+ х (£2) + у (£2) + у(х (£2))
Этот закон может быть интерпретирован двумя способами. Вынесение индекса за скобку
<но рассматривать с позиции “внешнего исследователя”. В этом случае внешний исследователь
щеляст” с помощью этой операции “внутренние миры” отдельных персонажей; тем самым,
учает возможность рассматривать внутренние миры в их целостности. Но из этого не следует,
у самих персонажей есть целостная картина.
С другой стороны, вынесение индекса можно рассматривать именно как возникновение
:рсонажа картины, т. е. эго некоторая операция, происходящая “внутри” персонажа.
Обратим внимание на то, что это изображение не позволяет получать информацию об
<ватности отражения персонажами картин, лежащих перед другими персонажами. Например,
гь мы имеем два члена £2х и £2ху. Персонаж У может иметь как адекватное отражение ?х, так
эинпипиально не адекватное. Символика регистрирует лишь факт