Page 39 - apuntes-cc3a1lculo-integral-2023-1
P. 39

Cálculo Integral 2023-2                                               Ingeniería Química



                    ln x        ln x    1    c
                                     
                    x 3   dx     2x   4x
                                         2
                                   2





                  Integrar:     x arc tgxdx
                                                                                             1
                         u  arc tgx  ---------------  >  du      1    -------------------  >   du   dx
                                                          
                                                                                               2
                                                                 2
                                                       dx  1 x                           1 x
                                                                                         x 2

                                 dv  x  ------------------ >  dv   x ----------------- >  v    2
                                                                
                                                          
                                                        2
                                                x 2    x    1
                                                     
                    arc tgx  xdx  arc tgx.   2     .  2   2  dx
                                                        2  1 x
                                                 2
                    arc tgx  xdx  arc tgx.  x    1   x   dx
                                                        

                                               x 2  2  1 x
                                                             2
                                                 2
                                                     1  
                                                                1  
                    arc tgx  xdx  arc tgx.        1      2  dx
                                                 2  2     1 x   
                                                x 2   1          
                    arc tgx xdx  arc tgx.           1dx      1   
                                                2  2         1 x 2    
                                                                     dx
                                                   
                                                                         
                                                 x 2   1
                    arc tgx  xdx  arc tgx.      x  arctgx   c
                                                 2  2

                                       1   2            1    1
                   arc tgx  xdx     x arc tgx    x   arctgx   c
                                                       2
                                                             2
                                      2


                                 2
                            
                  Integrar:  ln x dx
                                                         du  1                           1
                                    2
                             u  ln x   --------------------- >     2 ------------------- >  du   2dx
                                                        dx  x                             x
                               dv  dx                   >  dv   x                   >  v  x
                                                           
                                                                  
                                          1
                   ln x dx  ln x .x   x.  2dx
                       2
                                2
                                      
                                          x







                                                                                                        39
                  Julio Meléndez Pulido
   34   35   36   37   38   39   40   41   42   43   44