Page 29 - UNI ARITMETICA 5
P. 29

Aritmética                                                                            5° UNI


          PROPORCIÓN ARMÓNICA
          Dado cuatro números ordinales a; b; c y d: la diferencia de los dos primeros es a la diferencia de los dos últimos,
          como la primera en al cuarto.
                                                          −
                                                         a b  =  a
                                                          −
                                                         c d   d

          Proporción Armónica Discreta.- Es aquella en la que sus cuatro términos son diferentes

                                                          −
                                                         a b  =  a
                                                          −
                                                         c d   d

          Donde: a; b; c y d son llamadas cuartas armónicas.

          Proporción Armónica Continua.- Es aquella en la que sus términos medios son iguales.
                                                          −
                                                         a b  =  a
                                                          −
                                                         b d   d


                                               a y d :  son llamadas terceras armónicas
                                              
                                      Donde :   b : media armónica
                                              
                                              
                                                  2ad
                                               b =  a d
                                                    +
                                              

          Promedios

          Dados los números reales positivos:
                                                     a1; a2; a3; ......; an

          donde a1 y an son el menor y mayor respectivamente.
          El promedio “p” de dichos números es un valor que para ciertos efectos puede reemplazarlos a todos y se cumple
          que: a1 < p < an

          Definiremos los siguientes promedios:

          1.  Promedio o Media Aritmética (MA)
                                                       a +  a +  a +  .... a
                                                                    +
                                                 MA =   1  2   3       n
                                                              n

          2.  Promedio o Media Geométrica (MG)
                                                  MG =  n  a a   a     .... a 
                                                          1  2  3     n

          3.  Promedio o Media Armónica (MH)
                                                              n
                                                 MH =
                                                      1  +  1  +  1  +  .....+  1
                                                      a 1  a 2  a 3   a n

          Caso particular:

          Para dos números a y b
                   +
                  a b
             MA =     ;
                   2
             MG =  ab
                   2     2ab
             MH =      =
                  1  +  a  a b
                          +
                  a  b

          Propiedades:

          1.  Si a = b; MA = MG = MH
             Si a ≠ b; MA > MG > MH

               2
          2.  MG  = MA.MH


            Compendio                                                                                       -28-
   24   25   26   27   28   29   30   31   32   33   34