Page 98 - Modul Aljabar
P. 98
b.u = (–3, 2, 1) dan v = (2, 1, 0)
<u, v> = <(–3, 2, 1), (2, 1, 0)>
= 3(–3).2 + 5.2.1 – 1.0
= – 18 + 10 – 0 = – 8
3. Misal u, v ∈ R2 dengan u = (x1, y1) dan v = (x2, y2).
Tentukan apakah <u, v>
berikut merupakan hasil dalam di R2!
a. <u, v> = 3x1x2 + 5y1y2
b. <u, v> = x1x2 – 2y1y2
Penyelesaian :
a. Misal u = (x1, y1), v = (x2, y2) dan w = (x3, y3)
Buktikan aksioma 1
<u, v> = <v, u>
<u, v> = <(x1, y1), (x2, y2)>
= 3x1x2 + 5y1y2
= 3x2x1 + 5y2y1
= <(x2, y2), (x1, y1)>
= <u, v>
Memenuhi aksioma 1
Buktikan aksioma 2
<u+v, w> = <u, w> + <v, w>
<u+v, w> = <(x1, y1) + (x2, y2), (x3, y3)>
= <(x1 + x2, y1 + y2), (x3, y3)>
= 3(x1 + x2 ).x3 + 5(y1 + y2).y3
= (3x1 + 3x2).x3 + (5y1 + 5y2).y3
= 3 x1x3 + 3 x2x3 + 5 y1y3 + 5 y2y3
= (3 x1x3 + 5 y1y3) + (3 x2x3 + 5 y2y3)
93