Page 31 - Dialectica
P. 31
La l´ ogica como imagen del universo
Luego de todo esto faltaba algo muy importante: el movimiento de
la Luna. De esto se ocupa en [63, 64, III, Theorema iii, iv]. En este caso
Newton simplemente verifica que la aceleraci´ on centr´ ıpeta de la Luna y
la ca´ ıda de los cuerpos en la superficie de la Tierra tambi´ en cumplen la
ley inversa al cuadrado de la distancia. 38
La argumentaci´ on de Newton era abrumadora: el movimiento cir-
cular uniforme cumpl´ ıa con K1; el sistema solar, los sat´ elites de J´ upiter,
Saturno y la Tierra cumpl´ ıan con K3. Completaba, finalmente la argu-
mentaci´ on con una demostraci´ on te´ orica de la segunda ley de Kepler
(K2) que establec´ ıa que el movimiento planetario ocurr´ ıa en elipses
con el Sol en uno de los focos. Una ´ ultima comprobaci´ on fue la recons-
trucci´ on de un cometa descubierto por John Flamsteed (1646, 1719).
Los Principia desterraban la vieja teor´ ıa planetaria de Klaudios Pto-
lemaios (100?, 170?). Sin embargo no exist´ ıa evidencia experimental
directa acerca de la gravitaci´ on.
¿Qu´ e valor l´ ogico ten´ ıa entonces la gravitaci´ on universal? Era una
afirmaci´ on “verdadera”, sin duda, puesto que se relacionaba con con
afirmaciones “verdaderas” de la matem´ atica y la geometr´ ıa y con ob-
servaciones experimentales. Sin embargo, a los ojos del siglo 20 y del
presente, hoy no cabe duda que era una “verdad provisoria”, puesto
que la idea de gravitaci´ on universal fue superada por la idea de “espa-
cio curvo” de la Relatividad General de Albert Einstein (1879, 1955).
En definitiva, ninguna afirmaci´ on cient´ ıfica, por consolidada y acepta-
da que est´ e, no es una “verdad final y absoluta”, es solamente algo m´ as
verdadero que la teor´ ıa anterior y pero seguramente menos verdadero
38
Las medidas de diversos astr´ onomos muestran que la distancia de la Luna a la Tierra
es de 60 radios terrestres; su per´ ıodo T es 27 d´ ıas, 7 horas, 43 minutos –T = 39.343
6
minutos– y la circunferencia terrestre es c = 2π r = 123,2496 × 10 pies de Par´ ıs
(´ estas son las cifras que emplea Newton). Luego, la aceleraci´ on centr´ ıpeta de la Luna
2
2
6
es α = 4π × 60 r/T 2 = 120 π c/T 2 = 120 π × 123,2496 × 10 /(39,343) ×
2
6
2
10 = 120 π × 123,2496/(39,343) = 30,0 pies/min . Luego, la “ca´ ıda” de la Luna
2
hacia la Tierra en un minuto es 30,0 t /2 = 30,0/2 = 15,0 pies. Newton calcula
15 1/12 o sea 15,08. La aceleraci´ on en la superficie de la tierra, de acuerdo con la ley
2
de gravitaci´ on ser´ ıa 60 × 60 veces mayor o sea 30,0 pies/seg y de aqu´ ı la ca´ ıda en
un segundo ser´ ıa tambi´ en 15,0 pies. El pie de Par´ ıs es de 326,6 mil´ ımetros, luego la
aceleraci´ on de la gravedad en la superficie de la Tierra, seg´ un las medidas de Newton,
2
es de 30,0 × 0,3266 ≈ 9,8 m/seg que coincide con las medidas actuales.
31