Page 44 - BAHAN AJAR GEOMETRI ANALITIK
P. 44
2. Persamaan garis singgung lingkaran yang berpusat di ( , ) melalui
titik ( , ) pada lingkaran
Dari gambar diatas titik ( , ) merupakan titik pusat lingkaran, ( , )
1
1
merupakan titik pada lingkaran dan = merupakan jari-jari lingkaran.
2
2
2
Sehingga ( − ) + ( − ) = .
1
1
2
2
2
Karena titik ( , ) berada pada lingkaran ( − ) + ( − ) =
1
1
maka :
2
2
2
( − ) + ( − ) =
2
( − ) + ( − ) =
2
2
1
1
2
2
2
2
2
− 2 + + − 2 + =
1
1
1
1
2
2
2
2
2
+ = 2 + 2 − − + ……
1
1
1
1
1
Misalkan garis singgung lingkaran tersebut adalah
2
1 −
Gradien garis ( ) = karena ⊥ maka
2
1 −
× 2 = −1
−
( 1 ) × = −1
− 2
1
( − )
= − 1
( − )
2
1
persamaan garis singgung lingkaran yang melalui titik ( , )
1
1
2
− = ( − )
− = ( − )
1
1
2
40