Page 145 - diaforikos
P. 145
ΚΕΦΑΛΑΙΟ 2 - Διαφορικός Λογισμός 145
14.
Η ποσότητα (σε gr) ενός ραδιενεργού υλικού, σ'ένα εργα-
σ τ ήριο, κατά τη χρονική στιγμή t (σε sec) δίνεται απ'τη
συνάρτηση f(t)= 100×e 0 ,3t ,
α) Να βρείτε την αρχική ποσότητα του υλικού
β) Να αποδείξετε ότι η ποσότητα του υλικού συνεχώς μει-
ώνεται
γ) Να βρείτε το ρυθμό που μειώνεται το υλικό τη χρονική
στιγμή t=10 sec.
15.
α) Ο Μάκης δίνει την πάρακάτω άσκηση:
Σώμα μάζας m α φ ήνεται από ένα ύψος να πέσει στο έδ α -
φος, με μοναδική δύναμη που ενεργεί σ'αυτό να είναι το
βάρος του W. Aν η συνάρτηση που δίνει την ορμή του σώ-
ματος είναι p(t)=200t, να βρείτε το βάρος του σώματος
W.
β) Ο Τάκης δίνει τη δική του εκδοχή:
Η απομάκρυνση από το σημείο που αφήνουμε το πάραπάνω
2
σώμα δίνεται από τη συνάρτηση h(t)=5t .
i) να βρείτε την ταχύτητα του σώματος τη χρονική στιγ-
μή t=2 sec.
ii) να δείξετε ότι η συνάρτηση της απομάκρυνσης ισχύει
για κάθε t (μέχρι να φτάσει στο έδαφος).
γ) ποιά είναι η μάζα του σώματος;
(Δινεται: W=10m, g=10m/s )
2
16.
Σώμα εκτελεί απλή αρμονική ταλάντωση (χωρίς αρχική
φάση) με δοσμένα
x(t)=A× ημωt υ(t)=A× ω× συνωt όπου,
υ: ταχύτητα, χ: απομάκ ρ υνση και Α: μέγιστη απομάκρυνση .
Να βρείτ ε
α) για ποιό t ο ρυθμός μεταβολής της κινητικής ενέργειας
γίνεται μέγιστος
β) ποιά είναι η μέγιστη τιμή του ρυθμού μεταβολής της κι-
νητικής ενέργειας.
Τακης Τσακαλακος Κερκυρα 2017