Page 12 - Modul Fismat Deret Fourier
P. 12


                                  2
                        Periode   L 2    L    

                             1  
                        a        f  (x )dx
                         0
                              
                             1   0        
                        a 0      0dx    1dx 
                             
                                     0   
                             1  
                        a 0     dx
                             
                               0
                             x   
                        a 0      0 

                             
                        a      0
                         0
                             
                        a 0   1


                             1  L         n x
                        a       f  (x ) cos  dx
                         n
                             L             L
                               L
                             1           n x
                        a n      f  (x ) cos  dx
                             
                                         
                             1  
                        a n      f  (x ) cos nxdx
                             
                               
                             1   0                     
                        a n      0 cos nxdx    1 cos nxdx 
                             
                                           0          
                             1  
                        a n     cos nxdx
                             
                               0
                              1        
                        a n    n sin nx  0 


                              1
                        a n    n sin n  sin   0

                        a n   0
   7   8   9   10   11   12   13   14   15   16   17