Page 271 - Matematika_XI_Siswa
P. 271

c.  Turunan fungsi f(x) = [u(x)]  dengan u'(x) ada, n bilangan asli.
                                                  n
                                               ()
                                           ) x
                        f '(x) =  lim  ( fx +D -  fx
                               D→ 0      D x
                                x
                                            n
                                                ux
                             = lim  [(ux +D x )] - [()] n
                               D→ 0        D x
                                x
                                                       n
                                                          ux
                                               () ux
                                           ) x
                             = lim  [(ux +D - ux  +  ()] - [()] n
                                x
                               D→ 0
                             Misal P = [u(x + Dx) – u(x)]
                                               ux
                                         ()] -
                                      +
                             = lim  [P ux   n  [()] n             (Gunakan Binomial Newton)
                               D→ 0        D x
                                x
                                              ux
                                                                                 ux
                                         n
                                                          ux
                                                  +
                                                              2
                                                     n
                                                                         ux
                                                                     n
                                                                 ... C P
                                     n
                                                                                     n
                                                                                         ux
                             = lim  P + C P n -  1 [()] C P n -  2 [()] ++  n- 1  [()] n -  1  + [()] - [()] n
                                                     2
                                         1
                               D→ 0                            D x
                                x
                                                                ... C
                                                 +
                                                    n
                                                                                      ux
                                                             2
                                     n
                                             ux
                                                         ux
                                                                                   n
                                                                         ux
                             = lim  P + nP n -  1 [()] C P n -  2 [()] ++  n n -  2 P 2 [()] n -  2  + C P [()] n -  1
                                                                                    1
                                                                                   n
                                                                                   -
                                                    2
                                x
                               D→ 0                            D x
                                                                                -
                                                                                 1
                                                                                n
                                                               ux
                                                                           ux
                                                    2
                                                ux
                                                       ... C
                             = lim   ( P P n -  1 + nP n -  2 [()] ++  n n -  2 P [()] n -  2  + C n n -  1 [()] )
                               D→ 0                       D x
                                x
                                                                                             1
                                                            2
                             = lim  P  lim(P n -  1  + nP n -  2 [()] ++  n  P [()] n -  2  + C n  [()] )
                                                                                             -
                                                                                            n
                                                                         ux
                                                               ... C
                                                       ux
                                                                                       ux
                               D→ 0 D x D→ 0                        n-  2           n-  1
                                       x
                                x
                                                            ) x
                                                               ()
                             Karena   lim  P   =  lim  ( ux +D - ux   = u'(x)
                                      D→ 0 D x  D→ 0      D x
                                                 x
                                       x
                                      lim P =  lim u(x + Dx) – u(x) = 0
                                      D→ 0     D→ 0
                                                x
                                       x
                             = u'(x)[0 + n[u(x)]] n – 1
                             = nu'(x)[u(x)] n – 1 .
                                                                             MATEMATIKA      261
   266   267   268   269   270   271   272   273   274   275   276