Page 169 - Buku Aljabar Linear & Matriks
P. 169
Solusi:
u ) 1 , 1 , 1 ( 1 1 1
1) v 1 = 1 = = ( , , )
u 1 3 3 3 3
2) u2 – proyw1 u2 = u2 – u2, v1 v1
2 1 1 1 2 1 1
( 1 ,0 = ) 1 , − ( , , ) = ( − , , )
3 3 3 3 3 3 3
u − proy u 3 2 1 1 2 1 1
v = 2 w 2 = (− , , )= (− , , )
2
u 2 − proy w u 2 6 3 3 3 6 6 6
3) u3 – proyw2 u3 = u3 – u3, v1 v1 – u3, v2 v2
1
= − , 1
,0
2 2
u − u ,v v − u ,v v 1 1
v 3 = 3 3 1 1 3 2 2 = −,0 ,
u 3 − u 3 ,v 1 v 1 − u 3 ,v 2 v 2 2 2
Jadi:
1 1 1
v 1 = , ,
3 3 3
2 1 1 Membentuk basis
v 2 = − , ,
6 6 6 orthonormal untuk
3
1 1 R
v 3 = ,0 − ,
2 2
160 | R u a n g - r u a n g V e k t o r